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Long-wavelength properties of the Kuramoto-Sivashinsky equation
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We study the long-wavelength properties of the one-dimensional Kuramoto-Sivashinsky equation. We
determine all the parameters in the effective long-wavelength equation, interpret the phenomenological
coefficients in terms of microscopic quantities, and estimate the time and length scales where the behav-
ior crosses over from linear diffusive to that of the full nonlinear equation. We corroborate our analysis
by studying variants of the model with more general linear terms.
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I. INTRODUCTION

An important issue in the study of dynamical systems
is the extent to which the long-wavelength properties of
deterministic systems with many degrees of freedom that
are chaotic can be described by coarse-grained models
with stochastic noise. Given the notorious difficulty of
handling nonlinear partial differential equations in three
dimensions, one studies model equations that are simpler
but still realistic. The Kuramoto-Sivashinsky (KS) equa-
tion [1,2], proposed for chemical waves and flame fronts,
affords an excellent testing ground to study this issue. In
this paper we use the method pioneered by Zaleski [3]
and extend his study of the effective stochastic equation
that describes the long-wavelength properties of the KS
equation in one dimension. We determine all the parame-
ters in the effective equation and interpret these ‘“macro-
scopic” phenomenological coefficients in terms of micro-
scopic quantities; we can then show that these imply
large values for the length and time scales at which the
long-wavelength behavior of the system crosses over from
free field to the interacting behavior predicted by the
effective equation. The universality of the results are ex-
amined by studying variants of the model in which more
general linear terms are allowed.

The Kuramoto-Sivashinsky equation in one dimension
reads

ht:_h —hxxxx_';—hyg ’ (1)
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where the subscripts denote partial derivatives. All the
coefficients have been fixed by appropriate rescaling, so
that the only parameter is the length L of the system,
which then plays a role analogous to that of Reynolds
number in fluid turbulence. Note that at the linear level
the long-wavelength modes are unstable: modes with
@, t
wave vector k evolve as e *, where the rate o, =k?—k*.
The nonlinearity allows the conversion of the growing
small-k modes into decaying large-k modes, thus stabiliz-
ing the system. For large L the system reaches an asymp-
totic state that is chaotic and is characterized by a
nonzero density of positive Liapunov exponents [2]. The
dynamical variable A(x,f) can be interpreted as the
height of a one-dimensional interface and the equation
displays the corresponding interface symmetry under
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translation of the interface h(x)—h(x)+c, where c is a
constant. If one sets u =h,, Eq. (1) assumes the form

Up = Tl T Uyxxx —UUy . (2)
Note that this equation possesses a conservation law:
f gu(x,t)dx is invariant under time evolution. The vari-
able u (x,?) in (2) can be interpreted as a one-dimensional
velocity field. Indeed, the nonlinear term is the same as
that in the one-dimensional Navier-Stokes equation. On
the other hand, the nonlinear term in (1) has the same
form as that in the equation proposed by Kardar, Parisi,
and Zhang (KPZ) [4] as a generic model for interface
growth. The latter is given by

h,=vh, +(A/2)h+7(x,1) , (3)
where 7 is a white-noise term
(n(x,t)m(x",t")) =D8(x —x")8(t—1t") . (4)

The crucial issue is whether the chaotic fluctuations in
the deterministic KS equation (1) simulate the effect of
external white noise in an effective KPZ equation (3),
thus rendering the long-wavelength properties of the two
systems identical. There has been some recent controver-
sy over whether the KS and KPZ equation in fact belong
to the same universality class. In work done simultane-
ously with ours, Sneppen et al. [5] show by extensive nu-
merical simulations of Eq. (1) on large systems that the
dynamic scaling form for the width as a function of the
size of the system L and time ¢ predicted by the KPZ
equation is observed; they performed a crossover analysis
showing that the intermediate scaling regime where free,
diffusive behavior obtains is long. They also determined
explicit values of the crossover length and time scales.
Previously, Yakhot [6] wused a perturbative
renormalization-group approach and suggested that the
KS equation [Eq. (2)] was described at long wavelengths
by the stochastic Burgers equation [7]. A constructive
approach was initiated by Zaleski in Ref. [3], in which he
explicitly eliminated short-wavelength degrees of freedom
u (k) with |k|> A, where A is an appropriately chosen
cutoff and provided numerical evidence that at long
wavelengths the system was described by a Burgers equa-
tion in the presence of external noise. The latter assumes
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the following form for |k| < A:

u,(k,t)=—vk2u(k,t)+g(k,t)+ f(k,t), (5)
where v is an effective diffusion constant, and

glk,t)=—ik /2 > u(qg,t)u(k —q,t) (6)
lgl <A, lk—gl<A

is the k-space expression of the nonlinear term in Eq. (2),
with the restriction that wave vectors are smaller than a
cutoff A and f(k,t) is the random force. The dynamical
variable can be obtained in real space by using
u(x,t)zzik\<Au(k,t)e*"kx; the sum extends over a re-
stricted range in contrast to the original equation (2),
where the values of k would span the entire interval in
wave-vector space.

II. METHOD

We summarize the procedure followed by Zaleski to
determine the parameters: In order that Eq. (5) be a
genuine stochastic equation the “random” force f(k’,t)
must be uncorrelated with any previous value of the field
u(k),i.e.,

(ulk,t)f(k',t"))=0 (7

for t <t'. This condition then serves to fix the value of v
in Eq. (5). The time evolution of modes with k <A can
be written in the form of Eq. (5) with f given by

flk,)=(v+1—k>k?u(k,t)

—ik /2 u(qg,t)u(k —q,t) . (8)
lgl>=Aor |[k—ql=A

In practice, one evolves the equation numerically and
evaluates Cfu(t)5<f(k,t')u( —k,t'—t)) as a function of
t, where the angular brackets denote averaging over ¢'.
Numerically one finds that Cg,(¢) reaches a constant
value for ¢t =7, =30 and small k; this saturation allows
one to choose a v(k) such that the condition given by Eq.
(7) is satisfied for 7, <<t <<7(k), where (k) diverges as
k —0. We point out that the noise term given above [Eq.
(8)] contains both an additive term and a multiplicative
term. Numerically, the contribution of the multiplicative
piece was found not to be significant (see later). Given
f(k,t) one can evaluate its autocorrelation function
g(k,s)={f(k,t)f(—k,t+s)), which is found to decay
rapidly, thus confirming the validity of the effective equa-
tion. Zaleski evaluated v and found a value of approxi-
mately 10 for A=0.5, thus demonstrating that at long
wavelengths the effective diffusion constant had become
positive. Thus he was able to show by explicit construc-
tion that on large scales the KS equation behaves like a
stochastic Burgers equation even though he was unable
to see the behavior predicted by the stochastic Burgers
equation for dynamic scaling phenomena. We have fol-
lowed this procedure to estimate the crossover length and
time scales and discuss their large values.

The numerical integration of Eq. (2) was performed by
using two different methods and the results were com-
pared. In the first we used the “approximate solution

operator” [8], which is a k-space method; in the other we
used a second-order Runge-Kutta method (for the time
discretization we used a mesh of size 0.02 to 0.01) with a
symmetric discretization of spatial derivatives (on a mesh
of unit size). We considered systems of size up to
L =4096. While the qualitative results were the same,
the continuum limit is better approximated by the k-
space method. The real-space method alters the effective
nonlinear coupling near the zone boundary when the
discrete spatial lattice is coarse; it is computationally
prohibitive to use a much finer grid.

III. RESULTS

In Fig. 1 we reproduce the spectrum C,, (k)
={(u(k,t)u(—k,t)), where the average is taken over
long times when u is on the asymptotic chaotic attractor.
The spectrum is flat for small k, decreases rapidly at large
k, and exhibits a hump with a maximum around k =0.71;
note that the maximally linearly unstable mode lies at
ko=1/v2=0.707. The steady-state value of C,, is
givenby C,, = A /L as k —0; we find 4 =1.2%0.1.

We have also reevaluated the viscosity v in Eq. (5) and
find a value of v=7.5x1.5 in rough agreement with the
earlier results of Ref. [3]. For consistency it is clear that
the value of v should be dominated by the |k| > A modes.
We have checked numerically that this holds: as long as
A falls in the flat region of the spectrum, i.e., the kK modes
in the hump are integrated over completely, the value of
v is independent of A.

Figure 2 shows the spectrum of the noise f (k) divided
by k2. It is flat for small k and rises for k >0.1. One can
therefore write for small k

Cff(k,t_t')=<f(k,t)f("k,t'))
~DKk[(1/21)e "It =01/m) 9)

where D denotes the strength of the force-force correla-
tion normalized appropriately and 7 is the correlation
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FIG. 1. Spectrum of the velocity field
C,,=(ulk,tyu(—k,t)) vs k. System size is L =800. N=1024
is the number of discrete k points.
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FIG 2. Spectrum of the effective noise

Crr={flk,t)f(—k,t)) divided by k> vs k. System size is
L =2800.

time. The proportionality to k2 at small k reflects the
conservation of total velocity in the original KS equation,
and is the required behavior of any stochastic force which
would appear in a Burgers equation. We also point out
that Eq. (8) for f(k,t) contains contributions from values
of k both above and below the cutoff A. The contribu-
tions to the sum where both |k| and |k —g| are above A
yield an additive noise term, whereas the remaining part
of f(k,t) is multiplicative, i.e., proportional to u(k,t).
Again for a bona fide stochastic noise the small-k limit of
(f(k,t)f(—k,t)) should be dominated by the additive
piece. This is indeed the case and is illustrated in Fig. 3,
where the additive and multiplicative contributions to the
force spectrum are shown separately.

We conclude that if one discards the negligible multi-
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FIG. 3. Additive (2) and multiplicative (3) contributions to
the total (1) spectrum of the noise {f(k,t)f(—k,t)) for a sys-
tem of size L =800 as a function of k.

plicative contributions both to the value of v and to f(k)
in Eq. (5), the long-wavelength limit of the KS equation
effectively behaves as a stochastic Burgers equation with
noise correlations given by (9).

We now proceed to check the consistency of the pro-
cedure and deduce the crossover length and time scales.
It is straightforward to derive for the linear part of the
effective Eq. (5) with the noise given above the relation

1

(ulk,u(—k,t)) (A/L)(H_sz) . (10)
Because of the existence of a fluctuation-dissipation
theorem for the one-dimensional Burgers equation [7],
the nonlinear term g(k) does not contribute to static
quantities at very long times. This statement holds true
in the long-wavelength limit for the noise that arises from
the integrated degrees of freedom because the additional
terms are irrelevant in the renormalization-group sense.
Thus the asymptotic equal-time correlation function in
the k — 0 limit takes the simple form

{ulk)u(—k))=A/L=D/2vL . (11)

We have checked that the product L{u(k)u(—k)) is in-
dependent of system size L for sizes from L =400 to
L =3200. For L =800, for which N, the number of
points within L, is equal to 1024 in the simulations, we
have determined the decay time 7 to be approximately
7.0£1.0 in agreement with the results of Ref. [3]. Using
this value, we estimate D from the small-k limit of the
equal-time force-force correlation function Cys(k,0) and
find D =17.9 when the cutoff A=0.5. With v=7.5, we
thus find consistency with relation (11).

When the cutoff A is reduced from a value of 0.5 to a
value of 0.25, we therefore expect the ratio D /v to be un-
changed. This is the case. While the value of C ff(k,O) is
slightly smaller, 7 also changes correspondingly, yielding
essentially the same value for D. As mentioned earlier, v
is essentially unchanged when A is decreased.

With the values of D and v obtained from the coarse-
graining procedure, we can determine the crossover
length and time scales using the results of a recent paper
by Krug, Meakin, and Halpin-Healy [9]. In order to do
this we revert to the interface representation; apart from
an obvious change in the noise-noise correlations due to
the transformation [the k? factor is missing in C rr(Kk,0)],
the correspondence is trivial. Comparing the temporal
growth of the width of the linearized KPZ equation

172
D i
(277,,‘/)1/2

wo(t)~[{(h—(h))*)]'"?= (12)

with the asymptotic behavior of the complete equation

w(t)=c( A )3, (13)

one obtains the crossover time ¢,, when the system starts
to exhibit nontrivial behavior. The universal value of ¢
has been obtained accurately in Ref. [9] to be 0.63. This
yields z, ~252v°/D?A*~18700. This compares with the
value of 7000 obtained by Sneppen et al. [5]. The cross-
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FIG. 4. Logarithm of the probability distribution P(u (k)) of
the velocity field vs u (k) for values of k below the cutoff.

over length can be estimated analogously using Ref. [9] to
be L,~152v*/DA?~=3600, to be compared with 2500 in
Ref. [5]. The difficulty in obtaining v accurately com-
bined with the rapid variation of the crossover length and
time scales with v lead to not insignificant uncertainties.
Nevertheless, we believe that the larger crossover values
are characteristic of the true continuum limit. Indeed,
our second-order Runge-Kutta integration procedure,
which is not as accurate in reproducing the continuum
limit (for the chosen space discretization), yields smaller
crossover values. The extra terms introduced by the
discretization procedure are presumably irrelevant
around the KPZ fixed point and therefore, one expects
the overall behavior to be universal.

The difficulty in observing KPZ behavior in the inter-
face model can be traced to the fact that the diffusion
constant in the effective equation has a large value. We
expect the diffusion constant to be of the order of /%; /7.q
the characteristic length /; in the problem is given by
27 /ky=8.9, which corresponds to the maximum in the
spectrum (see Fig. 1) and is the scale of the cellular struc-
tures in the system. The characteristic time scale 7.4 is
determined by the inverse of the largest Liapunov ex-
ponent A_ .., characterizing the chaotic behavior. We
have determined A_,, numerically using standard
methods and found a value of approximately 0.1. One ex-
pects the decorrelation time for the effective noise term to
be set by 1/A,,, and the value of 7.0 obtained for = is
consistent with this expectation. Using these values for
the effective time and length scales we estimate
v~(8.9)%0.1=7.9, which is in rough agreement with our
calculation. Thus the large diffusion constant can be at-
tributed to the large scale of the cellular structures.

We have carried out similar calculations for different
models, where the linear term has the form
a,k*—ask*—ack®—agk® in order to ascertain the
universality of the results and the applicability of the
qualitative arguments. Results similar to the ones de-
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FIG. 5. Probability distribution of the velocity field P(u(k))
vs u (k) on a linear plot for values of k including those in the
hump region of Fig. 1. System size is L = 800.

scribed above are obtained in a model where the fourth-
order derivative in Eq. (1) is replaced by a sixth-order one
[3]. What is worth pointing out is that the values of D
and v become huge. For a cutoff of A=0.25, we find (in
agreement with Ref. [3]) v=2042.5; in addition we have
determined D to be approximately 310. This enhanced
value is due to the much larger local fluctuations of
u(x,t) in this model and the concomitant larger
Liapunov exponent. However, the relation (11) is still
well satisfied: D /2v~7.8, while N{u(k,t)u(—k,t))
~7.74. In addition, the correlation time 7 in this case is
3.38, a factor of 2.18 smaller than the original model; cor-
respondingly the evaluation of the largest Liapunov ex-
ponent yields 0.22, a factor of 2.2 larger. Similar reason-
able agreement was found for the k>—k® model. Varying
the model by trying different coefficients a,,a4,a¢,a5 in
order to find a small value for v so that the crossover
time could be made smaller was unfruitful; the original
KS equation yielded the smallest value of the crossover
time scale.

We have also considered the probability distribution
P(u(k)) of the velocity field for Eq. (2) (cf. Fig. 4). For
small k’s below the cutoff, the distribution is, as expected
[7], Gaussian, with a width given by (u(k)u(—k)). As
soon as values of k are included which belong to the re-
gion of the hump in Fig. 1, the distribution ceases to be
Gaussian and acquires the broad background shown in
Fig. 5.
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